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Abstract—Planning for power systems with high penetrations
of variable renewable energy requires higher spatial and tempo-
ral granularity. However, most publicly available test systems are
of insufficient fidelity for developing methods and tools for high-
resolution planning. This paper presents methods to construct
open-access test systems of high spatial resolution to more
accurately represent infrastructure and high temporal resolution
to represent dynamics of demand and variable resources.

To demonstrate, a high-resolution test system representing
the United States is created using only publicly available data.
This test system is validated by running it in a production cost
model, with results compared against historical generation to
ensure that they are representative. The resulting open source
test system can support power system transition planning and
aid in development of tools to answer questions around how
best to reach decarbonization goals, using the most effective
combinations of transmission expansion, renewable generation,
and energy storage.

Index Terms—Power system economics, power system plan-
ning, power system simulation.

I. INTRODUCTION

Continental-scale electric power systems are some of the
most complex human creations in existence. Their smooth
operation is critical for modern life, and yet they are undergo-
ing a transformation due to the need to reduce anthropogenic
greenhouse gas emissions. This transformation will upend
decades of assumptions about power system planning and
operation, and is therefore critical to get right.

Effectively planning this transformation will require high-
quality models of existing infrastructure. Although recreation
of high-resolution spatial data is sometimes publicly available,
detailed information is often restricted on national security
grounds. This limitation led to creation of ‘synthetic’ models
of the U.S. power system by Texas A&M University (‘the
TAMU network’), representative of real patterns of geography
and network topology while disclosing no protected informa-
tion [1]. Some work has been done to add time-series load data
to this synthetic network [2], but to the best of the authors’
knowledge, a full dataset providing granular temporal data for
loads and variable renewable energy (VRE) for a large-scale
network of the U.S. power system is still unavailable.

This paper describes methods used to create high-resolution
test systems to better represent the current state of existing
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power systems. These efforts fall into three broad categories:
collecting static data describing system infrastructure, adding
high-resolution time-series data to represent the time-varying
nature of demand and variable renewable resources, and
refining the dataset based on operational simulations. Time-
matched historical data are used for demand and VRE gener-
ation to capture their inherent correlations. This dataset, and
associated methods, are the main contributions of this paper.

As a demonstration, a high-resolution test system is built
representing the U.S. power system in 2016, using entirely
publicly available information. This test system is publicly
available at [3]. This test system complements modern, pub-
licly available test systems such as the TAMU networks [4],
ReEDS [5], and RTS-GMLC [6]; each of which have strengths
and drawbacks that make them more appropriate for certain
types of studies. The TAMU networks have high spatial reso-
lution, but lack profiles for VRE generation; ReEDS has good
data for long-term planning, but has low spatial resolution; and
the RTS-GMLC network has high-resolution load and VRE
data, but covers a small geographic area.

II. STATIC DATA: NETWORK AND GENERATOR
CAPACITIES

A. Network Topology

As a starting point for the network topology, the TAMU
network was chosen for its high spatial resolution; it consists
of 82,000 buses, 104,121 branches, and 13,419 generators
in a fictitious configuration that is ‘realistic’ and represen-
tative of true infrastructure but not contain any confidential
information. This network is then updated with more recent
generator capacities (described in Sections II-B to II-D),
HVDC transmission lines (described in Section II-E), and
updated transmission capacity (described in Section IV-A).
The final network is shown in Figure 1.

B. Fossil Fuel Generators

EIA Form 860 [7] was used to calculate the total opera-
tional generator capacity by fuel type for each state in the
US (dividing states by interconnection when necessary). The
capacity of the corresponding generators per state and fuel type
in the TAMU network were scaled up or down to match the
EIA capacities. When scaling generator capacity, the minimum
power, ramp rates, and no-load costs were also scaled by the
same value to maintain per-unit operational characteristics.



Fig. 1. The high-resolution network topology used in the test system. Line
thickness is proportional to power capacity.

Within each state, the TAMU network features a range of
cost curve coefficients for each fuel type (except for fuel oil
generators, which are modeled as zero cost). However, the
relative competitiveness of generators by state inadequately
represents reality; for example, Wyoming coal generators were
modeled as more expensive than many other states in the west
despite their access to cheap Powder River Basin coal. To
correct for this, average fuel prices for coal and natural gas
by state and for fuel oil at the New York Harbor hub were
obtained from historical EIA data [8]–[10] and paired with
average generation heat rates by fuel [11] to obtain average
energy prices by fuel. Cost curves for all generators per fuel
type in each state were scaled by a constant factor (or replaced
in the case of fuel oil) such that capacity-weighted average
electricity prices matched the historical data.

Emissions curves are obtained from heat rate curves by
assuming constant rates of CO2 per MMBTu of fuel burned
[12]. These curves can be used to incorporate emissions
into power system operations, for either an emissions-trading
system or an emissions tax rate.

C. Geothermal and Other Renewables

Although geothermal generators are a relatively small share
of generation capacity, they provide a more significant share
of energy in California and Nevada due to their high capac-
ity factors. These generators are not present in the TAMU
network, so new generators are added to represent significant
geothermal generators in these states. For California, capacity
and generated energy per facility is available from the Cal-
ifornia Energy Commission [13]. For Nevada, facility-level
capacity data are available from NV Energy [14], state-level
energy production data are available from the EIA [15], and
a constant capacity factor for all plants is assumed.

From inspection of generator dispatches from CAISO,
geothermal generators run fairly constant generation rates
throughout the year. Therefore, for each generator the max-
imum power rating is set to the average generation over the
year and the minimum power rating is set to 95% of the
maximum power rating. Geothermal facilities are assigned to
network locations by correlating publicly available locations
for the facilities with corresponding locations in the network

with high voltage (100 kV or higher) buses. For ‘clusters’
of geothermal generators (e.g. the Geysers, Salton Sea in
California), the aggregate capacity is spread among several
high voltage buses in the area, and the powerflow checked to
ensure network feasibility and no undue local congestion.

Besides adding geothermal generators, new renewable gen-
erators are added when there were no utility-scale generators
of that type in that zone (e.g. solar in the southeastern states).
These generators are added at locations with good resource
quality and adequate transmission capacity.

D. Hydro Capacity

The TAMU network includes capacities for Texas hy-
droelectric generators that do not adequately reflect current
capacity. The capacities for this test system are adjusted using
publicly available data from ERCOT to more closely align
to real values [16]. From conversations with TAMU, it was
determined that some natural gas generators located near
hydroelectric facilities were incorrectly coded as hydro in the
TAMU network. After these generators were properly coded,
capacities more closely matched data from EIA Form 860
[7]. Hydroelectric dams which are not present in the TAMU
network are added at high voltage buses (100 kV or higher)
near their true locations.

E. HVDC Lines

Within each interconnection the TAMU network features
only AC transmission lines, and a small number of HVDC
lines are used to couple the interconnections. However, sev-
eral significant HVDC lines in the US run entirely within
interconnections. Therefore, additional intra-interconnection
HVDC lines are added to the network by matching lat/long
coordinates for true lines to coordinates of very-high voltage
buses in the synthetic network. For example, the 3100 MW
Pacific DC Intertie is modelled as running from a 765 kV bus
in Oregon to a 345 kV bus in Southern California; although
these voltages may not match the endpoint voltages of the true
grid, these synthetic endpoints are connected to locations in
the AC network with enough capacity to carry the full power
that the DC line can provide.

III. HOURLY TIME-SERIES DATA

Hourly time series profiles for 2016 are generated for de-
mand buses and for hydro, solar, and wind generators. To avoid
time zone and Daylight Saving Time discrepancies, all time
series are standardized to UTC. Variability of the resulting
demand and VRE profiles for the Western Interconnection is
shown in Figure 2. Interconnection demand peaks during late
afternoons in summer while VRE generation peaks mid-day in
spring, illustrating the time-alignment challenge of integrating
large shares of VRE generation.

A. Demand Profiles

Due to differing levels of data availability, different ap-
proaches are undertaken to construct demand profiles for buses
in each interconnection.
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Fig. 2. Hourly profiles of (a) demand and (b) solar, wind, and hydropower
for the Western Interconnection.

1) Western Interconnection: The historical hourly load pro-
file of each balancing authority area (BAA) in the U.S. is
publicly available from the EIA [17]. Each county in the
Western Interconnection is assigned to a BAA [18], and total
hourly load by BAA is distributed to each bus proportional to
the population by ZIP code [19].

2) ERCOT: The historical hourly load profile of Texas
weather zones is publicly available from ERCOT [20]. The
TAMU network has eight load zones which are geographically
consistent with ERCOT’s eight weather zones. Each load
zone’s demand profile is decomposed to bus-level load profiles
proportional to the population of the ZIP code associated with
each bus in the corresponding load zone.

3) Eastern Interconnection: The Eastern Interconnection is
more complex than the Western Interconnection or ERCOT,
and is represented by 70,000 nodes in the TAMU network
compared to 10,000 for the Western Interconnection and 2,000
for Texas. As such, more effort was required to gather and
clean demand data. Specifically:

1) Hourly demand data were downloaded from the EIA
[17]. Missing weekday data were replaced with an
average of the corresponding hours in neighboring week-
days, while missing weekend data were duplicated from
the remaining weekend day, or averaged from neighbor-
ing weekends when the entire weekend was unavailable.

2) Anomalous demand data were identified as those with an
hourly ramp rate magnitude of five standard deviations
above average. These data points were discarded and
linearly interpolated from non-anomalous hours.

3) Counties were mapped to BAA via publicly available

information or via direct contact with balancing author-
ity representatives, and buses were mapped to counties
using the Census Bureau’s API [21].

4) Finally, BAA hourly loads were decomposed to bus-level
load profiles proportional to the population of the ZIP
code associated with each bus in each BAA.

B. Hydro Profiles

Compared to thermal generators, hydroelectric generators
are significantly more constrained by hydrological cycles, and
must be operated in accordance with agricultural, navigational,
and ecological constraints. Monthly net generation is obtained
from EIA Form 923 [15], and historical hourly data from the
largest twenty hydroelectric dams in the U.S. Army Corps of
Engineers’ Northwestern hydro system [22] are used to obtain
a generic hydro profile to be applied to the generators in the
Western Interconnection, with the exception of Wyoming and
California. In Wyoming, the aforementioned method results
in hourly generation that occassionally exceeds capacity, so
monthly averages are used instead. In California, ISO data
indicate that hydro profiles follow the net demand of of
California [23], so this shape is applied to EIA energy totals.

Due to limited data availability for the Eastern Intercon-
nection and Texas, hydro profiles are modeled as constant
throughout the month in the Eastern Interconnection based on
the average power from the EIA Form 923 data [15]. Future
work will improve the fidelity of the Eastern hydro profiles.

C. Solar Profiles

Time-series solar irradiance for each solar plant in the
TAMU network is obtained from the National Solar Radiation
Database [24], which provides 1-hour resolution solar radia-
tion data for the entire U.S. and a growing list of international
locations on a 4 km2 grid, spanning 1998-2006. Irradiance
data are input into NREL’s System Advisor Model (SAM)
[25] to calculate power output. The PVWatts v5 model [26]
in SAM is used with all default values to obtain power
profiles for each type of PV array (fixed open rack, 1-axis
and 2-axis), and a weighted average of the different types is
assigned to each solar plant in the TAMU network based on
the overall ratio of installed capacity by interconnection. The
prevalence of tracking systems is seen to be highly dependent
on location, with the majority of capacity in the Eastern
Interconnection utilizing fixed-tilt systems (only 33% tracking)
and the majority of capacity in the Western Interconnection
and Texas utilizing single- or double-axis tracking systems
(76% for Western and 92% for Texas). Finally, capacities of
the solar plants in the TAMU network were scaled up by state
such that the state totals matched EIA Form 860 data [7].

D. Wind Profiles

Wind profiles are derived using the Rapid Refresh (RAP)
[27] numerical weather model. It covers North America and
is comprised primarily of a numerical weather model and
an analysis system to initialize that model. RAP provides
latitudinal and longitudinal components (U and V) of the wind



speed at 80 m above ground on a 13 km2 resolution grid,
for every hour ranging from May 2012 to date. Some data
are missing in 2016 and hence are filled in using a simple
procedure: extrema of the U and V components of the wind
speed are calculated from all non-missing entries sharing the
same location, same month, and same hour of the missing
entry. Then, a U and V value are randomly generated within
the respective derived ranges and used for imputation.

Wind speed is converted to power for all wind farms in the
TAMU network using the IEC Class 2 power curve provided
by NREL in the WIND Toolkit documentation [28]. Capacities
of wind farms in the TAMU network are scaled up by state
such that state totals matched EIA Form 860 data [7].

IV. VALIDATION PROCESS

The high-resolution test system developed as described
in Sections II-III was validated by running a multi-period
optimal power flow using a DC powerflow approximation
(MPDCOPF) with MATPOWER/MOST [29], [30], with the
multi-period dispatch chosen to capture the impact of ramp
rate constraints. The 366 days of time-series data were broken
into 61 individual simulations, each one representing 144
consecutive hours, and run consecutively. To bridge ramp-rate
constraints across these boundaries, the optimal power output
for each generator in the final hour of each simulation was
used to constrain the active power of generators in the first
hour of the next simulation. Any time the MPDCOPF was
found to be infeasible, demand was reduced by 5% for that
simulation and the MPDCOPF for that time interval was re-
launched with the reduced demand.

A. Network Topology

When initially running the test system, unusual levels of
congestion were observed in several branches in the Western
Interconnection, and unusually severe load curtailment was ob-
served in ERCOT. These observations prompted enhancements
of the transmission network to better match the increased
levels of demand and generation, compared to demand data
that was originally developed based on census data from
2010 [31]. Across all interconnections, transmission network
capacity was increased until all demand can be feasibly served.

In the Western Interconnection, several branches labelled
as Transformer or TransformerWinding exhibited especially
high levels of congestion, with average shadow prices of
congestion as high as $119/MWh for one transformer in Idaho.
High congestion shadow prices led to very low locational
marginal prices (LMPs) in the surrounding upstream area, and
therefore a large degree of renewable curtailment from solar
and wind generators. Capacities of these congested branches
were gradually increased in step sizes of around 100 MW
until the LMPs at the renewable generators approached more
reasonable averages. Overall, the capacities of only 9 branches
were changed to reduce unrealistic congestion and curtailment.

In ERCOT, large increases in demand (primarily in the
eastern half of the state) and large increases in wind generation
(primarily in the western half of the state) were not reflected in

the east-to-west transmission capacity, causing both load shed-
ding in the east and wind curtailment in the west. To identify
which branches were most critical to upgrade, a MPDCOPF
problem with soft constraints on transmission capacity (with
a large linear penalization factor in the objective) was used to
identify which lines to upgrade, and by how much.

In all interconnections, many renewable generators are
connected to the meshed grid via radial ‘spur’ lines. When
the capacity of these renewable generators are scaled up, the
capacity of these spur lines is also increased to match the new
renewable capacity. This ensures that unrealistic congestion
does not exist on these spurs, as renewable generation investors
will typically upgrade spur transmission capacity with renew-
able capacity, at least to the meshed grid.

B. Cost Curve Revisions

After running the model for a full year, generation totals
by type and by state were compared against historical data
from EIA Form 923 [15]. When generation quantities differed
significantly from historical data, cost coefficients were ad-
justed on a state-by-state basis (by at most 5%). In reality
there are many mechanisms by which generation quantities are
decided which are not captured by a transmission-constrained
economic dispatch. However, modeling these mechanisms is
outside the capability of most researchers; the cost-curve
adjustments are a proxy which can yield similar results with
less modeling and computational complexity.

V. VALIDATION RESULTS

To validate the results from the new dataset, the test system
ran for an entire year as described in Section IV and results
were compared to historical generation and to the NREL
ReEDS Mid-Case Scenario results for 2016. Energy generation
by fuel for California and Washington are shown in Figure
3. Although the test system is still missing generators of less
common types (e.g. biomass), for the included generator types
the annual energy total matches fairly well with historical data,
and compares favorably with the ReEDS results. Although
ReEDS is more accurate for nuclear and wind generation, the
new test system is more accurate for solar, natural gas, hydro,
and geothermal generation; the overall energy error for the
new system is smaller when measured by Euclidean distance
or summed absolute errors. Total run-time is approximately 30
minutes for ERCOT, 3 hours for the Western Interconnection,
and 20 hours for the Eastern Interconnection.

VI. CONCLUSIONS

A set of methods has been presented to develop high-
resolution, publicly available test systems with coverage of
continental-scale power systems. Future work will include
development of input datasets under various technical and po-
litical scenarios which will impact projected demand profiles,
transmission capacities, and fuel prices.

The primary goals of developing enhanced test systems as
described herein are a) to support more accurate modeling of
current U.S. infrastructure, and b) to support development and
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Fig. 3. Total 2016 energy generation by fuel (TWh) in (a) California and
(b) Washington.

testing of high-resolution capacity expansion models (CEMs).
Many commercial CEMs and datasets exist, and several open-
source or open-access tools are in active development (e.g.
ReEDS [5], SWITCH 2.0 [32], and PyPSA [33]), but currently
there appears to be no fully-open source CEM tool with
associated high-resolution, non-confidential data for the U.S.

The authors are currently developing an open-source CEM
which can make use of high-resolution data to determine the
optimal combination of equipment (generation, transmission,
energy storage, distributed energy resources, etc.) for deep
decarbonization efforts. Design goals include a full set of
research-grade features and a flexible user interface accessible
to users with a wide range of technical backgrounds.
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